12 meses
15-02-2025
60
1500
3 meses
$ 76.450
La Maestría en Medicina Genómica de ISEIE México está diseñada para formar especialistas en el análisis, interpretación y aplicación de la información genética en la medicina personalizada.
Nos encargamos de abordar los fundamentos de la genómica, la bioinformática y la epigenética, permitiendo a los profesionales integrar tecnologías avanzadas en el diagnóstico, tratamiento y prevención de enfermedades genéticas y multifactoriales.
Dirigida a médicos, biólogos, farmacólogos y profesionales de la salud, la maestría combina conocimientos teóricos y habilidades prácticas en genómica clínica, farmacogenómica y medicina de precisión, preparando a los participantes para liderar investigaciones y proyectos innovadores en este campo.
La Institución Superior Estudios Innovadores Europeos estar enfocado en la mejora profesional de su participante, ofreciéndole el mejor conocimiento posible en Medicina Genómica.
Gracias a una distinción única y con demanda en el campo de esta especialidad, el egresado acabará teniendo amplias posibilidades de mejorar su actual puesto de trabajo, al igual que su propio prestigio Médico.
Nuestro master ofrece la posibilidad de profundizar y actualizar los conocimientos en esta materia, con el uso de una tecnología educativa vanguardista. Ofreciendo una visión global y al mismo tiempo poniendo el foco en los aspectos más importantes e innovadores de la medicina.
El máster en medicina genómica es una especialización que te prepara para adentrarte en el emocionante y en constante evolución campo de la genómica y su aplicación en la medicina. Este programa educativo está diseñado para brindarte los conocimientos y las habilidades necesarias para comprender y utilizar la información genética con el objetivo de mejorar el diagnóstico, tratamiento y prevención de enfermedades.
ISEIE tiene como objetivo promover la educación de calidad, la investigación de alto nivel y los estudios de excelencia en todo el mundo.
La titulación que reciben nuestros estudiantes son reconocidas en las empresas más prestigiosas.
ISEIE cuenta con una trayectoria formativa basada en años de experiencia y preparación de profesionales cualificados.
Alto porcentaje de aquellos que han estudiado un MBA han incrementado su salario
Según estudios, los perfiles más buscados son los que cuentan con formación académica superior.
Nuestro sistema educativo le permite compatibilizar de un modo práctico y sencillo los estudios con su vida personal y profesional.
Nuestro plan interno de calidad del instituto persigue diversos objetivos, como el aumento de la satisfacción de los estudiantes, el cumplimiento de los objetivos de calidad establecidos, el desarrollo de una cultura de calidad, el reforzamiento de la relación entre el personal y la universidad, y el mejoramiento continuo de los procesos.
De esta forma, el profesional que acceda al programa encontrarás el contenido más vanguardista y exhaustivo relacionado con el uso de materiales innovadores y altamente eficaces, conforme a las necesidades y problemáticas actuales, buscando la integración de conocimientos académicos y de formación profesional, en un ambiente competitivo globalizado.
Todo ello a través de de material de estudio presentado en un cómodo y accesible formato 100% online.
El empleo de la metodología Relearning en el desarrollo de este programa te permitirá fortalecer y enriquecer tus conocimientos y hacer que perduren en el tiempo a base de una reiteración de contenidos.
Módulo 1. Análisis Genómico
1.1. Genomas: secuenciación y ensamblado.
1.1.1. Estructura y organización de los genomas
1.1.2. Genotecas de alta capacidad
1.1.3. Secuenciación de nueva generación (NGS: next-generation sequencing): ventajas y desventajas de las diferentes plataformas
1.1.4. Aplicaciones
1.1.5. Control de calidad de datos NGS
1.1.6. Ensamblaje de novo de genomas y transcriptomas
1.1.7. Genes eucarióticos: regiones estructurales y reguladoras
1.1.8. Detección de genes: ORFs y predicción
1.2. Genómica estructural y comparada
1.2.1. Desarrollo de marcadores a gran escala: GBS (genotyping by sequencing)
1.2.2. Mapas genéticos de alta densidad
1.2.3. Mapas físicos y genéticos: integración
1.2.4. Genómica comparada
1.2.5. Detección de QTLs: Mapeo por intervalos y GWAS
1.2.6. Genómica poblacional y evolutiva
1.2.7. Marcadores neutrales vs adaptativos: huellas de selección
1.3. Genómica funcional
1.3.1. Anotación funcional de los genomas
1.3.2. Caracterización de las regiones reguladoras de los genomas: Iso-Seq, ATAC-Seq, ChIP, Hi-C
1.3.3. Transcripción del ADN: microarrays y RNA-Seq
1.3.4. Traducción del mRNA: Ribo-Seq y Proteómica
1.3.5. Integración entre genómica estructural y funcional: ASE, eQTL, mQTL, análisis de redes funcionales
1.3.6. Aplicaciones de la genómica funcional al estudio de los procesos biológicos
1.3.7. Metagenómica.
Módulo 2. Base de las Enfermedades Genéticas Humanas
2.1. Arquitectura genética de las enfermedades humanas
2.2.1. Tipos de variantes genéticas: mutaciones de un único nucleótido, repeticiones en tándem, reordenaciones cromosómicas
2.2.2. Frecuencia de variantes genéticas en poblaciones humanas
2.2.3. Equilibrio mutación-selección
2.2.4. Recombinación
2.2.5. Desequilibrio de ligamiento
2.2.6. Impacto de variantes genéticas
2.2.7. Concepto de enfermedad mendeliana versus enfermedad compleja
2.2.8. Hipótesis enfermedad común/variante común versus enfermedad común/variante rara 2.2.9. Heredabilidad
2.2.10. Bases de datos de relevancia
2.2. Abordaje de las bases genéticas das enfermedades mendelianas
2.2.1. Modelos de herencia mendeliana
2.2.2. Penetrancia y expresividad
2.2.3. Estudios de ligamiento en familias
2.2.4. Identificación de mutaciones causales mediante secuenciación de nueva generación: secuenciación de exomas, secuenciación de genomas completos
2.2.5. Significación clínica de variantes
2.2.6. Diagnóstico genético de enfermedades mendelianas
2.2.7. Bases de datos de relevancia.
2.3. Abordaje de las bases genéticas das enfermedades complejas
2.3.1. Estudios de genes candidatos
2.3.2. Estudios de genoma completo
2.3.3. Imputación
2.3.4. Problemas metodológicos de estudios de asociación caso-control: estratificación poblacional, potencia estadística, clasificación incorrecta del fenotipo, corrección por tests múltiples
2.3.5. Estudios de tríos frente a caso-control
2.3.6. Recursos bioinformáticos de utilidad en análisis genético de enfermedades complejas 2.3.7. Secuenciación masiva en paralelo.
2.4. Resultados de GWAS
2.4.1. Interpretación funcional de asociaciones
2.4.2. Genes asociados 2.4.3. Estudios de pathways
2.4.4. Estimas de riesgo poligénicos
2.4.5. Heredabilidad perdida
2.4.6. Pleiotropía
2.4.7. Aleatorización mendeliana
2.4.8. Hacia una medicina de precisión
Módulo 3. Técnicas de Genotipado y Secuenciación
3.1. Generalidades
3.1.1. Tipos de archivos
3.1.2. Procedencia
3.1.3. Software para las prácticas.
3.2. Toma de muestra
3.2.1. Extracción
3.2.2. Cuantificación
3.2.3. Genotipado
3.2.4. Análisis de muestras de Genotipado.
3.3. Secuenciación
3.3.1. Análisis de muestras de Secuenciación
3.4. Datos en el informe
3.4.1. Guías clínicas
3.4.2. Uso de datos genéticos
Módulo 4. Genómica del Cáncer
4.1. Introducción a la genómica del cáncer
4.1.1. Biología del cáncer
4.1.2. Genes conductores del cáncer
4.1.3. Bases de datos genómicas del cáncer
4.1.4. Muestreo y secuenciación genómica de tumores
4.2. Alteraciones genómicas del cáncer
4.2.1. Tipos e identificación de variantes genómicas
4.2.2. Heterogeneidad intratumoral y evolución somática
4.3. Relevancia clínica de la genómica del cáncer
4.3.1. Biomarcadores genómicos
4.3.2. Impacto de la genómica en el diagnóstico molecular
4.4. Tratamientos guiados por la genómica
4.4.1. Estrategias terapéuticas
4.4.2. Traslación clínica
4.4.3. Biopsia líquida
Módulo 5. Genes con Implicación Farmacogenética
5.1. Definición de Biomarcadores
5.2. Nuevas tecnologías
5.2.1. Uso de análisis masivos en farmacogenética y medicina personalizada
5.2.2. Epigenética y tecnologías de edición en farmacogenética
Módulo 6. Células madres en Cáncer y Envejecimiento
6.1. Introducción al concepto de célula madre
6.1.1. Células madre embrionarias y adultas
6.1.2. Pluripotencia y autorrenovación
6.1.3. Control del estado de pluripotencia
6.1.4. Métodos y herramientas para el estudio de las células madre
6.1.5. Discutir un artículo relevante sobre las características de las células madre.
6.2. Inducción de pluripotencia
6.2.1. Sistemas de inducción de pluripotencia: transferencia nuclear de célula somática, fusión celular, reprogramación con factores genéticos definidos
6.2.2. Utilidad de células pluripotentes inducidas: terapia celular, modelos de enfermedad, sistemas de ensayo de fármacos
6.2.2. Discutir un/os artículo/s relevante sobre células de pluripotencia inducida
6.3. Células madre en envejecimiento
6.3.1. Concepto de envejecimiento y hallmarks
6.3.2. Agotamiento de células madre adultas como base del envejecimiento
6.3.3. Reprogramación celular y rejuvenecimiento
6.3.4. Discutir un artículo relevante sobre el papel de las células madre en envejecimiento.
6.4. Reprogramación in vivo
6.4.1. Significado, oportunidades, nuevos desarrollos
6.4.2. ¿Regeneración, rejuvenecimiento?
6.5. El concepto de “Cancer Stem Cell”
6.5.1. Historia
6.5.2. Definición de una célula madre de cáncer (célula madre troncal)
6.5.3. Biología de las células madre de cáncer
6.5.4. Métodos para su identificación y purificación
6.5.5. Ensayos moleculares y funcionales para estudiar las células madre de cáncer
6.6. El nicho de las células madre de cáncer y el microambiente tumoral
6.6.1. Composición celular y no celular del nicho de las células madre de cáncer y el microambiente tumoral
6.6.2. Comunicación entre las células madre de cáncer y las células del nicho/microambiente tumoral
6.6.3. Modulación del nicho/microambiente tumoral y su efecto sobre las células madre de cáncer
6.7. Eliminación de las células madre de cáncer como mecanismo curativo para el cáncer
6.7.1. Propiedades de las células madre de cáncer que se puedan inhibir o modular como posible tratamiento
6.7.2. Terapias actuales dirigidas a las células madre de cáncer
6.7.3. Plasticidad tumoral (definición e historia)
6.7.4. Plasticidad a nivel de las células madre de cáncer
6.7.5. Importancia y relevancia de la plasticidad respecto a tratamientos dirigidos a las células madre de cáncer
Módulo 7. Genética Clínica
7.1. Diagnóstico Molecular de enfermedades
7.1.1. Utilidad del estudio molecular: diagnóstico y seguimiento
7.1.2. Diagnóstico familiar, prenatal, presintomático
7.1.3. Monitorización de enfermedades
7.2. Citogenética y alteraciones estructurales del genoma
7.2.1. Mecanismos de producción
7.2.2. Incidencia
7.2.3. Descripción clínica y citogenética de las más frecuentes
7.3. Farmacogenética y farmacogenómica
7.3.1. Definición y antecedentes
7.3.2. Farmacocinética y farmacodinamia
7.3.3. Genes fase I y II, receptores, transportadores
7.3.4. Dianas terapéuticas
7.3.5. Farmacoepigenética
7.3.6. Farmacogenes
7.3.7. Efectos adversos.
7.4. Consulta y asesoramiento genético
7.4.1. Fases consulta
7.4.2. Consentimiento informado
7.4.3. Consejo genético en cáncer
7.4.4. Establecimiento de riesgos.
Módulo 8. Trabajo de Fin de Máster
Profesionales y estudiantes del ámbito de la rehabilitación que quieran ampliar o actualizar sus conocimientos en materia de tratamiento y actuación con personas con ictus. Además, sería recomendable para cualquier persona que, por cuestiones personales o profesionales, tenga interés en formarse en medicina rehabilitadora del daño cerebral.
Al concluir el máster, los participantes serán galardonados con una titulación oficial otorgada por ISEIE Innovation School. Esta titulación se encuentra respaldada por una certificación que equivale a 60 créditos ECTS (European Credit Transfer and Accumulation System) y representa un total de 1500 horas de dedicación al estudio.
Esta titulación de ISEIE no solo enriquecerá su imagen y credibilidad ante potenciales clientes, sino que reforzará significativamente su perfil profesional en el ámbito laboral. Al presentar esta certificación, podrá demostrar de manera concreta y verificable su nivel de conocimiento y competencia en el área temática del programa.
Esto resultará en un aumento de su empleabilidad, al hacerle destacar entre otros candidatos y resaltar su compromiso con la mejora continua y el desarrollo profesional.
Una vez que haya completado satisfactoriamente todos los módulos del Máster en medicina genómica de ISEIE, deberá llevar a cabo un trabajo final en el cual deberá aplicar y demostrar los conocimientos que ha adquirido a lo largo del programa.
Este trabajo final suele ser una oportunidad para poner en práctica lo que ha aprendido y mostrar su comprensión y habilidades en el tema.
Puede tomar la forma de un proyecto, un informe, una presentación u otra tarea específica, dependiendo del contenido y sus objetivos.
Recuerde seguir las instrucciones proporcionadas y consultar con su instructor o profesor si tiene alguna pregunta sobre cómo abordar el trabajo final.
Descubre las preguntas más frecuentes y sus respuestas, de no e no encontrar una solución a tus dudas te invitamos a contactarnos, estaremos felices de brindarte más información
Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloque laudantium totam rem aperiam, eaque ipsa quae.